Discrete Wavelet Transform & Linear Prediction Coding Based Method for Speech Recognition via Neural Network

نویسنده

  • T. Abu Hilal
چکیده

In the proposed work, the techniques of wavelet transform (WT) and neural network were introduced for speech based text-independent speaker identification and Arabic vowel recognition. The linear prediction coding coefficients (LPCC) of discrete wavelet transform (DWT) upon level 3 features extraction method was developed. Feature vector fed to probabilistic neural networks (PNN) for classification. The functions of features extraction and classification are performed using the wavelet transform and neural networks (DWTPNN) expert system. The declared results show that the proposed method can make an powerful analysis with average identification rates reached 93. Two published methods were investigated for comparison. The best recognition rate selection obtained was for framed DWT. Discrete wavelet transform was studied to improve the system robustness against the noise of 0dB. Our investigation of speaker-independent Arabic vowels classifier system performance is performed via several experiments depending on vowel type. The declared results show that the proposed method can make an effectual analysis with identification rates may reach 93%. In general, a speaker identification system can be implemented by observing the voiced/unvoiced components or through analyzing the energy distribution of utterances. A number of digital signal processing algorithms, such as LPC technique (Adami & Barone, 2001; Tajima, Port, & Dalby, 1997), Mel frequency cepstral coefficients (MFCCs) (Mashao & Skosan, 2006; Sroka & Braida, 2005; Kanedera, Arai, Hermansky & Pavel, 1999; Daqrouq & Al-Faouri, 2010), DWT (Fonseca, Guido, Scalassara, Maciel, & Pereira, 2007) and wavelet packet transform (WPT) (Lung, 2006; Zhang & Jiao, 2004) are extensively utilized. In the beginning of 1990s, Mel frequency cepstral technique became the most widely used technique for recognition purposes due to its aptitude to represent the speech spectrum in a compacted form (Sarikaya & ansen, 2000). Actually, MFCCs simulate the model of umans’ auditory perception and have been proven to be very effective in automatic speech recognition system and modeling the individual frequency components of speech signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabic vowels recognition based on wavelet average framing linear prediction coding and neural network

In this work, an average framing linear prediction coding (AFLPC) technique for speaker-independent Arabic vowels recognition system was proposed. Usually, linear prediction coding (LPC) has been applied in many speech recognition applications, however, the combination of modified LPC termed AFLPC with wavelet transform (WT) is proposed in this study for vowel recognition. The investigation pro...

متن کامل

Feed Forward Back Propagation Neural Network Method for Arabic Vowel Recognition Based on Wavelet Linear Prediction Coding

A novel vowel feature extraction method via hybrid wavelet and linear prediction coding (LPC) is presented here. The proposed Arabic vowels recognition system is composed of very promising techniques; wavelet transform (WT) with linear prediction coding (LPC) for feature extraction and feed forward backpropagation neural network (FFBPNN) for classification. Trying to enhance the recognition pro...

متن کامل

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

A New Hybrid Prediction Reduces the Bullwhip Effect of Demand in a Three-level Supply Chain

In this paper, we present a new predictive hybrid model using discrete wavelet transform (DWT), and the artificial neural network (ANN) to reduce the bullwhip effect of demand in supply chain to obtain a real amount of final customer demand. Also, we compare our result with more comprehensive sample of previous research to extend the scope of our study. In this new research our methodology is c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012